

R308A 用户手册

电池领域专用芯片

请认真阅读关于 矽励微 知识产权政策

本文中提及的"无锡矽励微电子有限公司"(简称"本公司")对此产品持有知识产权及其对应的法定权益。未经合法 授权,使用本公司的 集成电路 或其他相关产品的行为将被视为侵权。对于任何未经授权而侵犯本公司知识产权的实体或个人,本公司有权采取法律手段保护权益,并将对由此造成的损害寻求赔偿。

*本公司保留对产品规格书中,关于产品设计、功能和可靠性方面的改进作进一步说明的权利,但对于规格内容的使用并不承担责任。文档中所描述的应用案例仅供参考,本公司不保证和不表示这些应用,在没有更深入地更改和修正就能适用。同时,本公司不推荐产品使用在可能会对人身造成危害的场景。本公司的产品未经特别授权,不得用于救生、维生器件或系统中或作为关键器件使用。

*本公司保留在未经预告的情况下修改其产品的权利。

内置 MOSFET 锂电池保护芯片 R308A

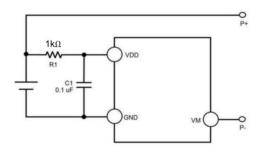
概述

R308A 是一款内置 MOSFET 的单节锂电池保护芯片。该芯片具有非常低的功耗和非常低阻抗的内置 MOSFET。该芯片有充电过压,充电过流,放电过压,放电过流,过热,短路等各项保护等功能,确保电芯安全,高效的工作。

R308A 采用 S0T23-5 封装,外围只需要一个电阻和一个电容,应用极其简洁,工作安全可靠。

应用

单节锂离子可充电电池组 单节锂聚合物可充电电池组


自动激活问题

电阻 R1 阻值 470Ω - $2k\Omega$, 电容 C1 容值 0.1-1uF,接电芯后芯片能够自动激活,芯片正常工作。

特性

- 1 内置 16.5 mΩ MOSFET
- 2 散热好的 SOT23-5 封装
- 3 内置过温保护
- 4 三重过放电流检测保护
- 5 超小静态电流和休眠电流 A 静态工作电流为 2.2 uA
 - B 休眠电流为 1.0 uA
- 6 符合欧洲 "ROHS" 标准的无铅产品

典型应用图

封装和引脚

5 4	管脚	符号	管脚描述
VM VM	1	NC	NC
	2	GND	芯片地,接电池芯负极
NC GND VDD	3	VDD	电源端
SOT23-5	4, 5	VM	充电器负电压接入端

订货信息

型号	封装	过充检 测电压 (V)	过充解 除电压 (V)	过放检 测电压 (V)	过放解 除电压 (V)	过流检 测电流 (A)	打印标记
R308A	S0T23-5	4. 30	4. 10	2. 40	3.0	9.0	R308a xxxx

注意:打印标记的xxxx为字母和数字,用于产品批次识别

内置 MOSFET 锂电池保护芯片 R308A

原理图

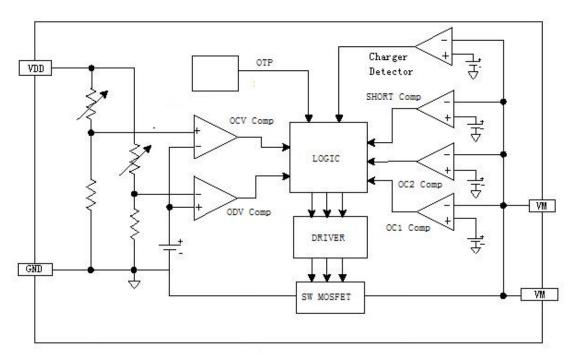


Figure 1. 原理图

绝对最大额定值

参 数	符号	最小值	最大值	单 位
供电电压 (VDD 和 GND 间电压)	VDD	-0.3	8.0	V
充电器输入电压(VM和GND间电压)	VM	-6.0	8. 0	V
存贮温度范围	TSTG	-55	145	°C
结温	TJ	-40	145	°C
功率损耗 T=25°C	PMAX		400	mW
ESD	HBM		2000	V

注:各项参数若超出"绝对最大值"的范围,将有可能对芯片造成永久性损伤。以上给出的仅是极限范围,在这样的极限条件下工作,芯片的技术指标将得不到保证。长期工作在"绝对最大值"附近,会影响到芯片的可靠性。

推荐工作条件

参 数	符号	最小值	最大值	单 位
供电电压 (VDD 和 GND 间电压)	VDD	0	6.0	V
充电器输入电压(VM和GND间电压)	VM	-5.0	6. 0	V
存贮温度范围	TSTG	-40	85	°C

R308A rev.0.6

www.rocsemi.com

内置 MOSFET 锂电池保护芯片 R308A

电器参数

除非特殊说明,TA = 27^oC, VDD=3.7V

项目	符号	条件	最 小	典型值	最大值	单位
检测电压			值			
过充检测电压	Vocv		4. 25	4.30	4. 35	V
过充解除电压	Vocr		4.03	4.10	4. 17	V
过放检测电压	Vodv		2. 30	2.40	2. 50	V
过放解除电压	Vodr		2.9	3.0	3. 1	V
检测电流		·	•			
过放电流检测 1	IoCI1		7. 5	9.0	12	A
过放电流检测 2	IOCI2		9	12	15	A
短路电流检测	ISHORT		15	25	35	A
充电电流检测	ІСНА		6.0	8.0	10	A
电流损耗						
工作电流	IOPE	VM 悬空		2. 2	5. 0	μА
休眠电流	IPDN	VDD=1.6V		1.0	2.0	μА
VM 上下拉电流		·	•			
内部上拉电流	IPU			7		μА
内部下拉电流	IPD	VM=1.OV		14		μА
FET 内阻		·				
VM 到 GND 内阻	RDS (ON)	$I_{VM} = 1.0A$	14	16.5	18	mΩ
过温保护						
过温保护检测温度	TSHD			145		$^{\circ}$
过温保护释放温度	TSHR			120		
检测延时						
过充检测电压延时	Tocv			100		mS
过放检测电压延时	Todv			50		mS
过放电流 1 检测延时	TIOV1			6		mS
过放电流 2 检测延时	TIOV2			2		mS
短路电流检测延时	TSHORT			150		uS

无锡矽励微电子有限公司

无锡市滨湖区建筑西路777号A3幢7层703-704 https://www.rocsemi.com/ 电话13510126819

内置 MOSFET 锂电池保护芯片 R308A

功能描述

R308A 监控电池的电压和电流,并通过断开充电器或者负载,保护单节可充电锂电池不会因为过充电压、过放电压、过放电流以及短路等情况而损坏。这些功能都使可充电电池工作在指定的范围内。该芯片仅需一颗外接电容和一个外接电阻, MOSFET已内置,等效电阻的典型值为 16.5 mΩ。

R308A 支持四种运行模式:正常工作模式、充电工作模式、放电工作模式和休眠工作模式。

1. 正常工作模式

如果没有检测到任何异常情况,充电和放电 过程都将自由转换。这种情况称为正常工作 模式。

2. 过充电压情况

在正常条件下的充电过程中,当电池电压高于过充检测电压(Vocv),并持续时间达到过充电压检测延迟时间(Tocv)或更长,R308A将控制MOSFET以停止充电。这种情况称为过充电压情况。如果异常情况在过充电压检测延迟时间(Tocv)内消失,系统将不动作。以下两种情况下,过充电压情况将被释放:(1). 充电器连接情况下,VM 端的电压低于充电器检测电压Vcha,电池电压掉至过充释放电压(VOCR)。

(2). 充电器未连接情况下,电池电压掉至过充检测电压(Vocv)。当充电器未被连接时,电池电压仍然高于过充检测电压,电池将通过内部二极管放电。

3. 过充电流情况

在充电工作模式下, 如果电流的值超过 ICHA 并持续一段时间(ToCII)或更长,芯 片将控制MOSFET 以停止充电。这种情况被 称为过充电流情况。R308A将持续监控电流 状态,当连接负载或者充电器断开,芯片将 释放过充电流情况。

4. 过放电压情况

在正常条件下的放电过程中,当电池电压掉至过放检测电压(VODV),并持续时间达到过放电压检测延迟时间(TODV)或更长,R308A将切断电池和负载的连接,以停止放电。这种情况被称为过放电压情况。此时放电控制MOSFET被断开,内部上拉电流管打开。当VDD电压小于等于2.0V(典型值),电流消耗将降低至休眠状态下的电流消耗(IPDN)。这种情况被称为休眠情况。当VDD电压等于2.3V(典型值)或更高时,休眠条件将被释放。电池电压大于等于过放检测释放电压(VODR)时,R308A将回到正常工作条件。

5. 过放电流情况 (过放电流1和过放电流2 的检测) 如果放电电流超过额定值,且持续时间大于等于过放电流检测延迟时间,电池和负载将被断开。如果在过放电流检测延迟时间内,电流又降至额定值范围之内,系统将不动作。芯片内部下拉电流下拉VM,当VM的电压小于或等于过放电流1的参考电压,过放电流状态将被复位。

6. 负载短路电流情况

若VM管脚的电压小于等于短路保护电压 (VSHORT),系统将停止放电电池和负载的连接将断开。TSHORT 是切断电流的最大延迟时间。当VM的电压小于或等于过放电流1的参考电压,负载短路状态将被复位。

7. 充电器检测

当处于过放电状态下的电池和充电器相连,若VM 管脚电压小于等于充电器检测电压 VCHA, 当电池电压大于等于过放检测电压 VODV, R308A将释放过放电状态。

8. 0V充电

可以0V充电,电池电压低于2.3V,充电芯片进入休眠状态,充电时MOS断开,通过体二极管充电。电池电压低于2.3V,充电电流不能大于500mA,以免电池和保护芯片损坏。

内置 MOSFET 锂电池保护芯片 R308A

时序图

1. 过充(OCV) →放电 →正常工作

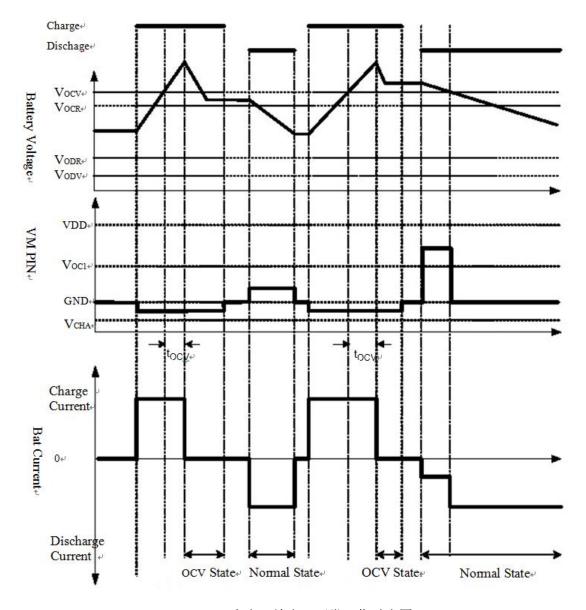


Figure 2. 充电,放电,正常工作时序图

内置 MOSFET 锂电池保护芯片 R308A

2. 过放(ODV) →充电 →正常工作

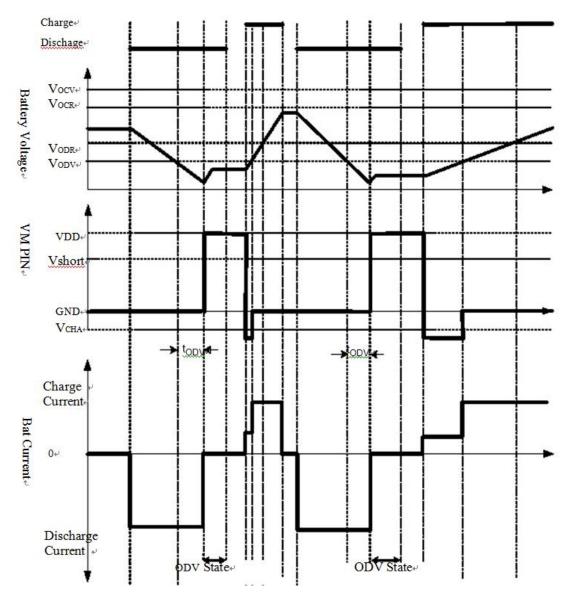
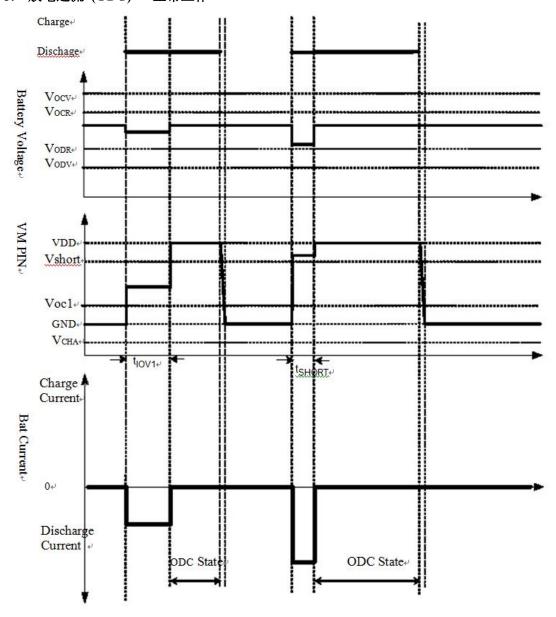
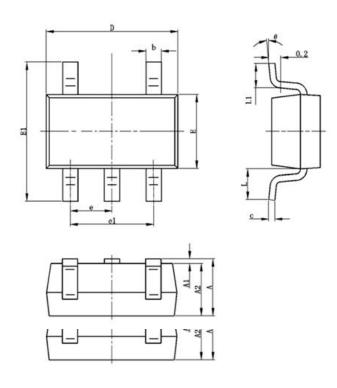


Figure 3. 过放, 充电和正常工作时序图

内置 MOSFET 锂电池保护芯片 R308A

3. 放电过流 (ODC) →正常工作




Figure 4. 放电过流和正常工作时序图

内置 MOSFET 锂电池保护芯片 R308A

外形尺寸

PACKAGE OUTLINE

SYMB OL	II	NSION N ETERS	DIMENSION IN INCHES				
	MIN	MIN MAX		MAX			
Α	1.050	1.250	0.041	0.049			
A1	0.000	0.100	0.000	0.004			
A2	1.050	1.150	0.041	0.045			
b	0.300	0.400	0.012	0.016			
С	0.100	0.200	0.004	0.008			
D	2.820	3.020	0.111	0.119			
Е	1.500	1.700	0.059	0.067			
E1	2.650	2.950	0.104	0.116			
е	0.950 TYP		0.037 TYP				
e1	1.800	2.000	0.071	0.079			
L	0.700 REF		0.028 REF				
L1	0.300	0.600	0.012	0.024			
θ	0°	8°	0°	8°			